skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nilles, Christian K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We shed light on the mechanism and rate-determining steps of the electrochemical carboxylation of acetophenone as a function of CO 2 concentration by using a robust finite element analysis model that incorporates each reaction step. Specifically, we show that the first electrochemical reduction of acetophenone is followed by the homogeneous chemical addition of CO 2 . The electrochemical reduction of the acetophenone-CO 2 adduct is more facile than that of acetophenone, resulting in an Electrochemical–Chemical–Electrochemical (ECE) reaction pathway that appears as a single voltammetric wave. These modeling results provide new fundamental insights into the complex microenvironment in CO 2 -rich media that produces an optimum electrochemical carboxylation rate as a function of CO 2 pressure. 
    more » « less
  2. null (Ed.)